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ABSTRACT 

The r eac t ion  operator  formulation f o r  t h e  exact so lu t ion  of the  

SchrBdinger equation is  used with a t runcated b a s i s  set t o  ob ta in  

approximate so lu t ions .  The r e l a t ionsh ip  between t h i s  t runcated r e a c t i o n  

opera tor  formalism and t h e  Rayleigh-Ritz v a r i a t i o n a l  method i s  emphasized 

and shown e x p l i c i t l y .  The t runcated r eac t ion  operator  and i t s  matr ix  

elements are discussed i n  general ;  computed and discussed f o r  a s i m p l e  

example, t h e  helium atom using a three membered basis set. It i s  

shown t h a t  t h e  r e a c t i o n  operator  can be replaced by a func t ion  which w e  

c a l l  t h e  "effective" per turbat ion.  This func t ion  has very fundamental 

s ign i f i cance  and may lend i t s e l f  t o  accura te  empiricism. 

are given comparing t h e  "effective" per turba t ion  with t h e  pe r tu rba t ion  

and approximations t o  t h i s  func t ion  f o r  t h e  helium atom are computed. 
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TRU"ATED REACTION OPERATORS 

1 Introduction 

1 2 4 Watson , Brueckner and Levinson Lt5wdin3 aiad others have derived 

the reaction operator formulation for the exact solution of the 

Schrbdinger equation. This formulation can be used with a truncated 

basis set to obtain approximate solutions sf the SchrBdinger equation. 

One of the purposes of our present discussion is to emphasize and show 

explicitly, in the simplest possible mannerJ the relationship between 

the approximate solutions obtained with a truncated reaction operator 

formalism and the solutions obtained by the Kayleigh-Ritz variational 

method. The approximate reaction operator and its matrix elements are 

discussed in general and in connection with a simple example, i.e. the 

helium atom, using a three membered basis set. 

The reaction operator can be replaced by a function, Veff , which 
we call the "effective" perturbation. It appears to us that this 
function has very fundamental significance. 

obtained a backlog of numerical and theoretical experience with the 

determination of the '?effective" potentials for atomic and molecular 

problems, we may be able to accurately empiricize 

good values for the energy and other physical observables of these 

systems 

Ultimately after we have 

thus obtaining Veff 

First, consider that part of the reaction operator formulation 

for the exact solution of the SchrBdinger equation pertinent to this 

paper. We fix our attention on the effect ~f the perturbation V on 

the q-th unperturbed state. The q-th state is considered to be non- 
degenerate and is not necessarily the ground state. The Hamiltonian 

for the unperturbed system is H and 
0 

- - - o - -  

K. M. Watson, Phys. Rev. 

IC. A; Rrileckner and C. A. Levinson, Phys. Rev. 97, 1344 (1955). 

P. 0. Lbdin, J. Math. Phys. 2, 969 (1962). 
A more complete list of references is given in K. Kumar, Verturba- 
tion Theory and the Nuclear Many Body Problem'? (North-Holland 
Publishing Co. Amsterdam, 1962). 

89, 575 (1953). 
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where pk and Ek ( O )  are t h e  normalized eigenfunct ion and eigenvalue,  

respec t ive ly ,  f o r  t h e  k- th  unperturbed s ta te .  For t h e  per turbed 

system, the  Hamiltonian H , i s  given by 

H = H o + V  

The r eac t ion  o r  energy s h i f t  operator ,  t , is  def ined by 

where E i s  t h e  exact  energy f o r  t h e  perturbed system. L e t  us  de f ine  

two p ro jec t ion  operators ,  0 and P , such t h a t  
q 

ox= yq 
and 

P = 1 - 0  

where )c i s  a t r i a l  funct ion.  

shown t h a t  t h e  hermi t ian  opera tor  t , associated wi th  V , 
and t h e  s t a t e  under cons idera t ion  q , i s  given by 

Using t h e s e  d e f i n i t i o n s  i t  can be 

Ho ' 3 

t = V + V T o t  

where 

TO = P [N-O + P(Eq - H o ) g  -'P 

( 4 )  

(5) 

(7) 

Here a i s  an a r b i t r a r y  number which in su res  t h e  ex i s t ence  of t h e  

inve r se  operator  i n  Eq. (7). 
3 The exact wave func t ion  f o r  t h e  per turbed s t a t e ,  $, , i s  given by 
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where W 
s t a t e ;  

i s  the  wave operator  associated wi th  t h e  q- th  unperturbed 

W - 1 + T  t = ( l / V ) t  
0 ( 9 )  

Here 

has not  been normalized t o  un i ty ,  
Jrq ' and hence t h e  wave funct ion,  

One may de f ine  an weffec t iveR perturbat ion,  Veff(q) , which 

rep laces  the  opera tor  t i n  t h e  above formulation; 

Clear ly  t h e  exact  energy and wave funct ion f o r  t h e  perturbed system 

may be w r i t t e n  as 

and 

I n  Secs. 2 and 3 Veff(q) i s  compared wi th  t h e  per turba t ion  V . I n  

(9) Sec. 4 approximations t o  

It is  our hope t h a t  t h e  func t ion  

f o r  t h e  helium atom are computed. 

(q) 
'eff 

w i l l  lend i t s e l f  t o  empiricism. 'eff 

2. Truncated Reaction Operators and the  Approximate Solu t ion  of t h e  

SchrBdinger Equation. 

I n  t h i s  s e c t i o n  w e  l i m i t  considerat ion to t r i a l  funct ions which 

may be expanded i n  terms of a t runcated b a s i s  set, 

e igenfunct ions  of an Ho . For t h i s  choice of t r i a l  func t ion  t is 
equiva len t  t o  a t runcated r eac t ion  operator ,  

only t h e  set {Yk} 

fpk], of n 
k -J 

t(n) ,which involves  

{ak} , i s  discussed b r i e f l y  i n  Sec. 3; bu t  t h e  t reatment  i s  more 

(The u s e  of an a r b i t r a r y  t runcated b a s i s  set, 
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complicated.) The matrix elements of t ( n )  are obtained by an i t e r a -  

t i v e  procedure, a f t e r  which approxJmatlons to t h e  energy, Eq(n) and 

t h e  normalized wave function, Vq(nB3c~a be easily calculated.  

an expression f o r  t5e  approximate "effectZve" per turba t ion ,  Veff(q9n) 

is  obtained. 

F i n a l l y  

For  the  class of tr5al funmetisns whtch are l i n e a r  expansions i n  

t h e  t runcated s e t  the  operator B is equivalent  t o  

wi th  0 + P(n) = 1 Using Eq, (14 )  w e  may write 

where the  inverse  operatm in Eq. (15) is w e l l  deEined assuming Eq(n) 

does not equal any of t h e  eigeir,vali-es 

(14) and (15) w e  obta in  

Ek (0) 'Using Eqs. (I.), (31, (6), 

and 

The approximate wave operator ,  W(G) may b e  obtained from Eqs.  

(9) and (16) ; 

Using Eqs, (8) and ( M ) ,  the noimaPSzed approximate per turbed wave 

funct ion i s  given by 

11 



where 

5 

and 

Thus both E (n) and v q ( n )  are e a s i l y  obtained once t h e  t (n) 
9 kq 

are computed. 

The mat r ix  r ep resen ta t ion  of t ( n )  using Eq. (16), is 

The system of equations given by Eq. (22) may be solved i t e r a t i v e l y .  

guess is  made f o r  t (n) Then t h e  system of equations 

A 

Q9 

k=l  

s=l, 0 0 0 ,  q-l,q+l,O- 0 > n  , 
i s  solved f o r  t h e  t (n)Ds  wi th  k#q These t (n)Oa are then  

used i n  t h e  express ion  
k9 kq 

k= l  

t o  c a l c u l a t e  a new va lue  f o r  t (n) This  procedure is  repeated u n t i l  

s e l f  cons is tency  is  obtained. From t h e  f i n a l  va lues  f o r  t h e  t (n) , 
t h e  approximate per turbed energy and normalized wave func t ion  

5 
by Eqs, (17) and (19) r e spec t ive ly  . Simi la r  iterative methods are 

99 

kq 
are given 

- - - - - -  
Solu t ions  may a l s o  be  obtained f o r  t h e  r e a c t i o n  ope ra to r  matrix 
elements tkA(n) , with  R #q using Eq. (16). These mat r ix  elements, 
however, do not have any obvious app l i ca t ion  i n  t h e  formulat ion f o r  
non-degenerate s t a t e s ,  Here i t  should be remembered t h a t  t h e  t-opera- 
t o r  i s  defined wi th  r e spec t  t o  t h e  s ta te  under cons idera t ion ,  q 
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ava i l ab le  f o r  so lv ing  t h e  s e c u l a r  equat ion of t h e  l i n e a r  v a r i a t i o n a l  

method, where t h e  v a r i a t i o n a l  c o e f f i c i e n t s  are t r e a t e d  i n  much the  sane 

way as t h e  t (n) (see Sec. 3 and f o r  example r e f .  6) .  
kcl 

The connection'between t h e  approximate "effective'P per turba t ion ,  

(q,n), and V i s  obtained us ing  Eqs. (11) and (16);  'eff 

(25) k= 1 

(q,n) , i s  equivalent  t o  t h e  opera tor  t (n)  i n  'eff This  function, 

t h e  computation of t h e  energy and wave func t ion  of t h e  perturbed system 

(see Sec. 1); indeed t (n) = (Veff(q,n))kq An approximate =ef fec t iveR 

per turba t ion  is  computed f o r  a s p e c i f i c  example, t h e  H e  atom, i n  Sec. 

'eff 4. I n  Sec. 3 an expression f o r  

a r b i t r a r y  b a s i s  set 

kq 

(q,n) is obtained i n  terms of an 

3. The Reaction Operator and t h e  Var i a t iona l  Method 

The r eac t ion  opera tor  formulation i s  c lose ly  connected t o  t h e  l i n e a r  

v a r i a t i o n a l  method f o r  so lv ing  t h e  Schrvdinger equation. 

i s  of course, imp l i c i t  i n  t h e  d e r i v a t i o n  of t h e  r e a c t i o n  ope ra to r  ., 

From Eq. (22) one ob ta ins  

This  property,  
3 

m 

(26) 
k= 1 

The matrix element of t h e  per turbed Hamiltonian, Hsk , is given by 

Hence Eq. (26) becomes 

P. 0. L0wdin, J. Molecular Spectrosc.  l0, 1 2  (1963) .  
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This set of equations has a non- t r iv i a l  s o l u t i o n  only i f  t h e  d e t e r -  

minant a1 equat ion 

where 

is s a t i s f i e d .  The f a c t o r  (Eq(n) - Ek ('))-' , common t o  each member of 

t h e  k- th  column, may be divided out of t h e  determinant given by Eq. 

(29). Thus w e  ob ta in  

S ince  t h e  product f a c t o r  is not zero, Eq. (31) reduces t o  t h e  usual '  

s e c u l a r  equat ion 7 

The r e l a t i o n s h i p  between t h e  l i n e a r  v a r i a t i o n a l  c o e f f i c i e n t s ,  

Ckq(n) , and t h e  mat r ix  elements of t he  r e a c t i o n  operator,  

i s  given by Eq. (20). This  formula is v a l i d  only f o r  a b a s i s  set 

composed of orthonormal eigenfunctions of H e 

tkq(n) , 

0 

A r b i t r a r y  Truncated Basis Set.  Consider an orthonormal t runca ted  

, wi th  t h e  s i n g l e  r e s t r i c t i o n  t h a t  W = vq . 
9 .  

basis set, 

Usizg th i s  we may write - - - - - -  
J. 0. Hirschfe lder ,  C. F. C u r t i s s  and Et. B. Bird, "Molecular Theory 
of Gases and Liquids"' (John Wiley and Sons, Inc., New York, 1954) 
p. 63. 
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(33) 

Here, however, w e  may not rep lace  

when the  s e t  {yk] 
theory such as t h a t  developed i n  Sec. 2, 

t o  obtain the  r e l a t i o n s h i p  between t h e  C (n) and t h e  matrix elements 

of t h e  r eac t ion  operator .  

H by Ek (" as was done previously 
0 

was used. Or. t h i s  account, t h e r e  is no s i m p l e  

On t h e  o the r  hand it i s  easy 

kq 

L e t  us expand the  normalized wave funct ion,  y q < n >  , i n  terms 

of t h e  b a s i s  s e t  

k= 1 k= 1 

where N is  a normalization constant .  Using Eqs. (8), (18) and (34) 
w e  obtain 

t(n>yq = w q ( n >  = v f ( c k q ( n ) / N ) q  (35) 
k= 1 

Thus the  general  expression f o r  the  t (n) i n  terms of t h e  Ckq(n) 

becomes 
s q  

n 
n 

Using Eq. (35) one may ob ta in  ah expression f o r  V e f f ( 9 , 4  ; 
n 

veff(q,") = (VI yq' 1 (Ckq(") IN) q 0 (37) 
k- 1 

Equations (36) and (37) conta in  E q s .  (22) and (25) as s p e c i a l  cases. 

8 4. An Example. t he  H e l i u m  Atom ; Discussion. 

We how consider  a s i m p l e  example t o  i l l u s t r a t e  some of t h e  ideas  

A more de t a i l ed  vers ion  of t h i s  work i s  a v a i l a b l e  i n  t h e  t echn ica l  
repor t ,  WIS-TCI-10, Theore t i ca l  Chemistry I n s t i t u t e ,  Univers i ty  of 
Wisconsin, 25 February 1963. 
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developed i n  t h e  preceding p a r t  of t h i s  paper. 

opera tor  matr ix  elements are obtained f o r  t h e  

states of helium. 

more conf igu ra t iona l  i n t e r a c t i o n  wave functions,  constructed from 

products of uniformly sca led  hydrogen 1s and 2s o r b i t a l s .  

mate "effect ive" per turba t ion ,  

examples. F ina l ly ,  t h e  r e s u l t s  obtained f o r  helium and t h e  more genera l  

r e s u l t s  of t h e  previous parts of t h i s  paper are discussed. 

The t runca ted  r e a c t i o n  

(1s) , (Is) (2s) , ( 2 ~ ) ~  'S 
Simple b a s i s  sets are  used, which cons i s t  of one o r  

2 

The approxi- 

(q,n) , i s  computed f o r  s p e c i f i c  "ef f 

The two e l e c t r o n  problem is  very advantageous f o r  t h i s  i nves t iga -  

t i o n  because of s i m p l i f i c a t i o n s  r e s u l t i n g  from t h e  f a c t o r i z a t i o n  of 

e l e c t r o n  spin. This  f a c t o r i z a t i o n  of sp in  permits t h e  use  of t h e  
following b a s i s  func t ions  9.  , 

y1 = ls(1) l s (2 )  

cp2 = (2)-' [ls(l) 2s(2) + l s (2 )  2 S ( l d  

p3 = 2 s ( l )  29(2) 

where 

i = 1 o r  2 , and 2 is  a s c a l i n g  parameter which may be energy optimized. 

The Hamiltonian, H , for t h e  helium atom may be w r i t t e n  i n  t h e  

form of Eq. (2) wi th  

A l l  equa t ions  and d a t a  given i n  t h i s  paper are i n  atomic u n i t s ,  
where t h e  u n i t  of length  i s  
energy is e21ao . a. , the Bohr radius, and t h e  u n i t  of 
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and 

(O) ,k  = 1;2,3, are e a s i l y  computed by applying H The eigenvalues 

t o  the  funct ions given by Eqs. (38). The matr ix  elements of t h e  p e r t u r -  

bat ion,  V , can be computed using t h e  t a b l e s  of Roothan" and Barnett  

and Coulson . 
( l ~ ) ~ , ( l s ) ( 2 8 ) , ( 2 s ) ~  ' 5  

respec t ive ly ,  i n  Eqs. (22), (23) and (24): and use the  i t e r a t i v e  method 

of so lu t ion  out l ined i n  Sec. 2 . I n  t h e  Appendix w e  d i scuss  b r i e f l y  

t h e  s e l e c t i v e  na ture  of t h e  i t e r a t i v e  method of so lv ing  f o r  t he  r e a c t i o n  

operator  matr ix  elements. It i s  shown t h a t  t h e  procedure w i l l  converge 

( f o r  the  ca l cu la t ions  considered i n  t h i s  paper) t o  the  s ta te  under con- 

s i d e r a t i o n  regard less  of t h e  i n i t i a l  choice of t 

t (n) are l i s t e d  a t  seve ra l  s t ages  of approximation e Each approxi- 

mation is computed using one o r  more of t h e  conf igura t ions  

( 2 ~ ) ~  i n  the  basis set. For t h e  unscaled computations wi th  Z = 2 , 
t h e  tkl(n) decrease by approximately an order  of magnitude as k 

t akes  on the  values  1,2,  and 3 respec t ive ly .  S imi l a r  t rends  f o r  t h e  

t (n), with q # 1, are suggested f o r  k > q (see Table I).  

However with the  l imi ted  d a t a  given here  it i s  impossible t o  e s t a b l i s h  

d e f i n i t e  t rends  f o r  t hese  matr ix  elements. The t (n) f o r  2 = 2 

seems t o  be  a r e l a t i v e l y  slowly varying func t ion  of 

less pronounced t rends  i n  t h e  t (n) are seen i n  t h e  energy optimized 

computations. 

Ek 0 

11 

To obta in  the  t runcated r eac t ion  opera tor  matr ix  elements f o r  t h e  

s t a t e s  of helium w e  set q =: 1,2,  and 3, 

12  

(n). InTable I (page 11) the  

( I s ) ~ , ( ~ s ) ( ~ s ) ,  

qq 13 
kq 

kcl 

kq 
n ., Simi lar  but 

kq 

lo C. C. 3 .  Roothan, J. Chem. Phys. 19, 1445 (1951). 

l1 M. P. Barnett  and C. A. Coulson, Ph i l .  Trans. (Se r i e s  A) 243, 221 
(1951). 

l2 The i t e r a t i v e  method was c a r r i e d  out  numerically us ing  a Control  
Data Corporation 1604 computer. I n  t h e  energy minimization p a r t  of 
t h e  program a simple search  method was employed. A l l  d a t a  has been 
rounded o f f .  

l3 The values of tkk(n) , with  A #  q , are not  given i n  t h i s  paper 
( see  r e f .  5), but  are a v a i l a b l e  i n  Tables  I V ,  V, and V I  of r e f .  8. 
The physical s ign i f i cance  and use  of t h e s e  mat r ix  elements is  a t  t h e  
present  time unclear .  
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Having computed t h e  t runcated r eac t ion  ogefatoc matrix ellenents 

one may compute approximatiocs to t h e  n o m d ~ n e d  p e r t u r b e d  Wave 

funct ions €CX t h e  

(191, (20), and (211, these are given i n  Table HI (page 13).  

t h e  unsealed and energy optimized ca lcu la t ions  the t r ends  i n  t h e  numer- 

i c a l  values of the c o e f f i c i e n t s  of t h e  m m a l i z e d  per turbed wave 

funct ion,  Ckq(n) are more c l e a r l y  def ined than these  for t h e  t (n) 

(compare t abJes  I. and 11). The Cy- (n) show a much smaller change i n  
K Q  

magnitude upon s c a l i n g  than t h e  t (E) ThLs w e  conclude t h a t  t h e  
kq 

C (n) a c t  as a "normalized" t (n) This  e f f e c t  is due t o  t h e  

energy d i f fe rence ,  Eq(n) - E;' appearing in t h e  d e f i n i t i o n  of t h e  

C (n) given by Eq, (20). This type of t rend i n  t h e  c o e f f i c i e n t s  of 

a l i n e a r  var ia tTons1 wave func t ion  i s  apparent in; t h e  work of o the r s  

-- f o r  example, the 

s ta te  of helium W i t h  numerical experience for atomic and molecular 

problems one may eventua l ly  be a b l e  t o  empirfcize t h e  t (n) or2 

equivalently,  t h e  Ckq(n) for h e l i u m  and 0 t h -  systems, Good estiqa- 

t i o n s  of t h e  energy could ther. b e  obtained from E q s ,  (17) and (36) .  

One can e a s i l y  compute approximations t~ the energy of t h e  

q 2 
(as) ,(ls)(2~>,(2s>" 'S s t a t e s  of helium us ing  Eqs.  

For both  

kC 

kq kq 

kq 

S h l l  and Lbwdin investigation of t h e  grcound 
14 

kq 

2 2 1  (Is) , ( l s ) ( 2 s )  ,(20) S states:  of hel ium using Eq,, (17) and t h e  

tqs(n) 

given i n  Table I11 (page 1 4 ) )  are not paxtfcz2;rIy good because of the  

n a t u r e  of t h e  troncated basis set used. 

obtained by the iterstisre procedure of Sec, 2, These energ ies ,  

The approximate "effect ive" per turba t ion ,  VeffCQ$%Z) j can be 
computed us icg  the  d a t a  of Table I (QP T a b l e  11) and Eq. (25) ( ~ r  Eq. 

(37)). As an example we give  Veff(P,3,2) and \Jeff(l,3,ZOp) where 

Z i s  the  energy q t i r n i t e d  2 Defining 
OP 
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we obtain 

b(1,0.8792) + 
-(O. 00302) g( 1,0.8792) g(2jO. 8792) (1,3,1.7583)/V(l.7583) = 'ef f 

for the helium atom 'ef f The simple form of the approximations to 

given above is due to the limited truncated basis set used. 

better basis sets would permit accurate calculations of 

sufficient numerical and theoretical experience we hope it will be 

possible to accurately empiricize 

problems. 

The use of 

After 'ef f 

for many atomic and molecular 'ef f 

One of the most useful aspects of the reaction operator formula- 

tion is that the operator, 

the system above the unperturbed state. Thus t and its matrix elements 

(and of course 

mation concerning the physical properties of the perturbed system. 

t , takes into account all interactions of 

and its matrix elements) must give valuable infor- 'ef f 
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Appendix. Convergence P rope r t i e s  of t h e  I t e r a t i v e  Method of Solving 
f o r  t h e  Reaction Operator Matrix Elements. 

I n  t h e  computations out l ined  i n  Sec. 4., i n t e r e s t i n g  convergence 

p rope r t i e s  of t h e  i t e r a t i v e  method f o r  obtaining t h e  r eac t ion  opera tor  

matr ix  elements were apparent. The method converged t o  t h e  t (n) 

corresponding t o  t h e  s ta te  under considerat ion even i f  t h e  i n i t i a l  guess 

f o r  t (n) corresponded t o  t h e  so lu t ion  f o r  another per turbed s t a t e .  

I n  t h e  following d iscuss ion  w e  make use of a theorem6 which s t a t e s :  

If t h e  equation, x = f (x)  sub jec t  t o  the  condi t ion f ' (x)  # 0 , i s  

solved by t h e  i t e r a t i v e  procedure, 

w i l l  converge t o  a p a r t i c u l a r  roo t  

I f ' (  A )  [ > 1 , t he  i t e r a t i v e  procedure w i l l  d iverge from t h e  root  

49 

qq 

= f ( k )  , then t h e  method xR+1 
A , i f  I f ' (  A )  I< 1 . I f  

. 
8 

Using Eq. (22) with q = 1; Z = 2;  s = 1,2,  o r  3; one can show 

t h a t  f o r  t h e  ground s ta te  

where 

I f  El ( O )  is  added t o  both s i d e s  of Eq. (45) w e  ob ta in  t h e  Feenberg 

per turba t ion  se r i e s15  f o r  a basis set comprised of t h r e e  real or tho-  

normal eigenfunctions of H . Equation (45) has t h e  form tll = f ( t l l )  . 
Using Eq. (45) one obtains:  

0 

(47) 

2 2  2 2  2 2  
'12'23 + '13'23 + '12713 

2 2  
i- v13y12+ 2v13v32v21(~12 i f ' ( t I1(3))  = 

- - - - - -  



The roo t s  of Eq. (45) t (3) 
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which correspond t o  t h e  j - t h  

perturbed s ta te  can be ca lcu la ted  by the following equation: 

The v a l u e s f o r  lf '(t:i)(3))1 , j = 1,2,3, are given below: 

lf'(t!;)(3))1 = 1.71 x 10 3 

Equations (49) expla in  t h e  s e l e c t i v e  nature  of t h e  i t e r a t i v e  procedure 

f o r  t h e  ground s ta te  ca l cu la t ions  with Z = 2 , n = 3. S imi la r  

explanat ions can be given f o r  t he  other  computations of Sec. 4. 8 

i 


